Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Genome Med ; 14(1): 94, 2022 08 17.
Article in English | MEDLINE | ID: covidwho-1993378

ABSTRACT

The cerebrospinal fluid (CSF) features a unique immune cell composition and is in constant contact with the brain borders, thus permitting insights into the brain to diagnose and monitor diseases. Recently, the meninges, which are filled with CSF, were identified as a neuroimmunological interface, highlighting the potential of exploring central nervous system (CNS) immunity by studying CNS border compartments. Here, we summarize how single-cell transcriptomics of such border compartments advance our understanding of neurological diseases, the challenges that remain, and what opportunities novel multi-omic methods offer. Single-cell transcriptomics studies have detected cytotoxic CD4+ T cells and clonally expanded T and B cells in the CSF in the autoimmune disease multiple sclerosis; clonally expanded pathogenic CD8+ T cells were found in the CSF and in the brain adjacent to ß-amyloid plaques of dementia patients; in patients with brain metastases, CD8+ T cell clonotypes were shared between the brain parenchyma and the CSF and persisted after therapy. We also outline how novel multi-omic approaches permit the simultaneous measurements of gene expression, chromatin accessibility, and protein in the same cells, which remain to be explored in the CSF. This calls for multicenter initiatives to create single-cell atlases, posing challenges in integrating patients and modalities across centers. While high-dimensional analyses of CSF cells are challenging, they hold potential for personalized medicine by better resolving heterogeneous diseases and stratifying patients.


Subject(s)
CD8-Positive T-Lymphocytes , Multiple Sclerosis , Brain/pathology , Central Nervous System/pathology , Humans , Immunity , Multicenter Studies as Topic
2.
Ther Adv Neurol Disord ; 14: 1756286421993701, 2021.
Article in English | MEDLINE | ID: covidwho-1133530

ABSTRACT

BACKGROUND: A growing number of reports suggest that infection with SARS-CoV-2 often leads to neurological involvement; however, data on the incidence and severity are limited to mainly case reports and retrospective studies. METHODS: This prospective, cross-sectional study of 102 SARS-CoV-2 PCR positive patients investigated the frequency, type, severity and risk factors as well as underlying pathophysiological mechanisms of neurological involvement (NIV) in COVID-19 patients. RESULTS: Across the cohort, 59.8% of patients had NIV. Unspecific NIV was suffered by 24.5%, mainly general weakness and cognitive decline or delirium. Mild NIV was found in 9.8%; most commonly, impaired taste or smell. Severe NIV was present in 23.5%; half of these suffered cerebral ischaemia. Incidence of NIV increased with respiratory symptoms of COVID-19. Mortality was higher with increasing NIV severity. Notably, 83.3% with severe NIV had a pre-existing neurological co-morbidity. All cerebrospinal fluid (CSF) samples were negative for SARS-CoV-2 RNA, and SARS-CoV-2 antibody quotient did not suggest intrathecal antibody synthesis. Of the patients with severe NIV, 50% had blood-brain barrier (BBB) disruption and showed a trend of elevated interleukin levels in CSF. Antibodies against neuronal and glial epitopes were detected in 35% of the patients tested. CONCLUSION: Cerebrovascular events were the most frequent severe NIV and severe NIV was associated with high mortality. Incidence of NIV increased with respiratory symptoms and NIV and pre-existing neurological morbidities were independent risk factors for fatality. Inflammatory involvement due to BBB disruption and cytokine release drives NIV, rather than direct viral invasion. These findings might help physicians define a further patient group requiring particular attention during the pandemic.

3.
Immunity ; 54(1): 164-175.e6, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1065205

ABSTRACT

Patients suffering from Coronavirus disease 2019 (COVID-19) can develop neurological sequelae, such as headache and neuroinflammatory or cerebrovascular disease. These conditions-termed here as Neuro-COVID-are more frequent in patients with severe COVID-19. To understand the etiology of these neurological sequelae, we utilized single-cell sequencing and examined the immune cell profiles from the cerebrospinal fluid (CSF) of Neuro-COVID patients compared with patients with non-inflammatory and autoimmune neurological diseases or with viral encephalitis. The CSF of Neuro-COVID patients exhibited an expansion of dedifferentiated monocytes and of exhausted CD4+ T cells. Neuro-COVID CSF leukocytes featured an enriched interferon signature; however, this was less pronounced than in viral encephalitis. Repertoire analysis revealed broad clonal T cell expansion and curtailed interferon response in severe compared with mild Neuro-COVID patients. Collectively, our findings document the CSF immune compartment in Neuro-COVID patients and suggest compromised antiviral responses in this setting.


Subject(s)
COVID-19/immunology , Monocytes/immunology , Nervous System Diseases/immunology , T-Lymphocytes/immunology , COVID-19/cerebrospinal fluid , COVID-19/complications , COVID-19/pathology , Cell Differentiation , Cerebrospinal Fluid/immunology , Encephalitis, Viral/cerebrospinal fluid , Encephalitis, Viral/immunology , Gene Expression Profiling , Humans , Interferons/genetics , Interferons/immunology , Leukocytes/immunology , Lymphocyte Activation , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/etiology , Nervous System Diseases/pathology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/immunology , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL